双向链表
单双链表的一些比较
- 单向链表,查找的方向只能是一个方向,而双向链表可以向前或者向后查找。
- 单向链表不能自我删除,需要靠辅助节点,而双向链表,则可以自我删除,所以前面我们单链表删除时节点,总是找到temp,temp是待删除节点的前一个节点.
分析思路和代码实现
双向链表的遍历,添加,修改,删除的操作思路,代码实现
- 遍历方式和单链表一样,只是可以向前,也可以向后查找
- 添加 (默认添加到双向链表的最后)
- 先找到双向链表的最后这个节点
- temp.next = newHeroNode
- newHeroNode.pre = temp
- 修改 思路和 原来的单向链表一样.
- 删除
- 因为是双向链表,因此,我们可以实现自我删除某个节点
- 直接找到要删除的这个节点,比如temp
- temp.pre.next = temp.next
- temp.next.pre = temp.pre;
public class DoubleLinkedListDemo { public static void main(String[] args) { // 测试 System.out.println("双向链表的测试"); // 先创建节点 HeroNode2 hero1 = new HeroNode2(1, "宋江", "及时雨"); HeroNode2 hero2 = new HeroNode2(2, "卢俊义", "玉麒麟"); HeroNode2 hero3 = new HeroNode2(3, "吴用", "智多星"); HeroNode2 hero4 = new HeroNode2(4, "林冲", "豹子头"); // 创建一个双向链表 DoubleLinkedList doubleLinkedList = new DoubleLinkedList(); doubleLinkedList.add(hero1); doubleLinkedList.add(hero2); doubleLinkedList.add(hero3); doubleLinkedList.add(hero4); doubleLinkedList.list(); // 修改 HeroNode2 newHeroNode = new HeroNode2(4, "公孙胜", "入云龙"); doubleLinkedList.update(newHeroNode); System.out.println("修改后的链表情况"); doubleLinkedList.list(); // 删除 doubleLinkedList.del(3); System.out.println("删除后的链表情况~~"); doubleLinkedList.list(); }}// 创建一个双向链表的类class DoubleLinkedList { // 先初始化一个头节点, 头节点不要动, 不存放具体的数据 private HeroNode2 head = new HeroNode2(0, "", ""); // 返回头节点 public HeroNode2 getHead() { return head; } // 遍历双向链表的方法 // 显示链表[遍历] public void list() { // 判断链表是否为空 if (head.next == null) { System.out.println("链表为空"); return; } // 因为头节点,不能动,因此我们需要一个辅助变量来遍历 HeroNode2 temp = head.next; while (true) { // 判断是否到链表最后 if (temp == null) { break; } // 输出节点的信息 System.out.println(temp); // 将temp后移, 一定小心 temp = temp.next; } } // 添加一个节点到双向链表的最后. public void add(HeroNode2 heroNode) { // 因为head节点不能动,因此我们需要一个辅助遍历 temp HeroNode2 temp = head; // 遍历链表,找到最后 while (true) { // 找到链表的最后 if (temp.next == null) {// break; } // 如果没有找到最后, 将将temp后移 temp = temp.next; } // 当退出while循环时,temp就指向了链表的最后 // 形成一个双向链表 temp.next = heroNode; heroNode.pre = temp; } // 修改一个节点的内容, 可以看到双向链表的节点内容修改和单向链表一样 // 只是 节点类型改成 HeroNode2 public void update(HeroNode2 newHeroNode) { // 判断是否空 if (head.next == null) { System.out.println("链表为空~"); return; } // 找到需要修改的节点, 根据no编号 // 定义一个辅助变量 HeroNode2 temp = head.next; boolean flag = false; // 表示是否找到该节点 while (true) { if (temp == null) { break; // 已经遍历完链表 } if (temp.no == newHeroNode.no) { // 找到 flag = true; break; } temp = temp.next; } // 根据flag 判断是否找到要修改的节点 if (flag) { temp.name = newHeroNode.name; temp.nickname = newHeroNode.nickname; } else { // 没有找到 System.out.printf("没有找到 编号 %d 的节点,不能修改\n", newHeroNode.no); } } // 从双向链表中删除一个节点, // 说明 // 1 对于双向链表,我们可以直接找到要删除的这个节点 // 2 找到后,自我删除即可 public void del(int no) { // 判断当前链表是否为空 if (head.next == null) {// 空链表 System.out.println("链表为空,无法删除"); return; } HeroNode2 temp = head.next; // 辅助变量(指针) boolean flag = false; // 标志是否找到待删除节点的 while (true) { if (temp == null) { // 已经到链表的最后 break; } if (temp.no == no) { // 找到的待删除节点的前一个节点temp flag = true; break; } temp = temp.next; // temp后移,遍历 } // 判断flag if (flag) { // 找到 // 可以删除 // temp.next = temp.next.next;[单向链表] temp.pre.next = temp.next; // 这里我们的代码有问题? // 如果是最后一个节点,就不需要执行下面这句话,否则出现空指针 if (temp.next != null) { temp.next.pre = temp.pre; } } else { System.out.printf("要删除的 %d 节点不存在\n", no); } }}// 定义HeroNode2 , 每个HeroNode 对象就是一个节点class HeroNode2 { public int no; public String name; public String nickname; public HeroNode2 next; // 指向下一个节点, 默认为null public HeroNode2 pre; // 指向前一个节点, 默认为null // 构造器 public HeroNode2(int no, String name, String nickname) { this.no = no; this.name = name; this.nickname = nickname; } // 为了显示方法,我们重新toString @Override public String toString() { return "HeroNode [no=" + no + ", name=" + name + ", nickname=" + nickname + "]"; }}复制代码
单向环形链表
Josephu(约瑟夫、约瑟夫环) 问题
Josephu 问题为:设编号为1,2,…n的n个人围坐一圈,约定编号为k(1<=k<=n)的人从1开始报数,数到m 的那个人出列,它的下一位又从1开始报数,数到m的那个人又出列,依次类推,直到所有人出列为止,由此产生一个出队编号的序列。
- 提示
用一个不带头结点的循环链表来处理Josephu问题:先构成一个有n个结点的单循环链表,然后由k结点起从1开始计数,计到m时,对应结点从链表中删除,然后再从被删除结点的下一个结点又从1开始计数,直到最后一个结点从链表中删除算法结束。
例: n = 5 , 即有5个人 。 k = 1, 从第一个人开始报数。 m = 2, 数2下。
使用环形单向链表来解决 Josephu问题
- 构建一个单向的环形链表思路
- 先创建第一个节点, 让 first 指向该节点,并形成环形,当前节点为curBoy
- 后面当我们每创建一个新的节点,就把该节点,加入到已有的环形链表中即可.将新的节点称为boy,将curboy.next = boy;boy.next=first;curBoy = boy;
- 遍历环形链表
- 先让一个辅助指针(变量) curBoy,指向first节点
- 然后通过一个while循环遍历 该环形链表即可 。当 curBoy.next == first 结束遍历
- 根据用户的输入,生成一个小孩出圈的顺序
n = 5 , 即有5个人
k = 1, 从第一个人开始报数
m = 2, 数2下
- 需求创建一个辅助指针(变量) helper , 事先应该指向环形链表的最后这个节点. 补充: 小孩报数前,先让 first 和 helper 移动 k - 1次
- 当小孩报数时,让first 和 helper 指针同时 的移动 m - 1 次
- 这时就可以将first 指向的小孩节点 出圈 first = first .next; helper.next = first 原来first 指向的节点就没有任何引用,就会被回收
代码实现
节点类
// 创建一个Boy类,表示一个节点class Boy { private int no;// 编号 private Boy next; // 指向下一个节点,默认null public Boy(int no) { this.no = no; } public int getNo() { return no; } public void setNo(int no) { this.no = no; } public Boy getNext() { return next; } public void setNext(Boy next) { this.next = next; }}复制代码
// 创建一个环形的单向链表class CircleSingleLinkedList { // 创建一个first节点,当前没有编号 private Boy first = null; // 添加小孩节点,构建成一个环形的链表 public void addBoy(int nums) { // nums 做一个数据校验 if (nums < 1) { System.out.println("nums的值不正确"); return; } Boy curBoy = null; // 辅助指针,帮助构建环形链表 // 使用for来创建我们的环形链表 for (int i = 1; i <= nums; i++) { // 根据编号,创建小孩节点 Boy boy = new Boy(i); // 如果是第一个小孩 if (i == 1) { first = boy; first.setNext(first); // 构成环 curBoy = first; // 让curBoy指向第一个小孩 } else { curBoy.setNext(boy);// boy.setNext(first);// curBoy = boy; } } } // 遍历当前的环形链表 public void showBoy() { // 判断链表是否为空 if (first == null) { System.out.println("没有任何小孩~~"); return; } // 因为first不能动,因此我们仍然使用一个辅助指针完成遍历 Boy curBoy = first; while (true) { System.out.printf("小孩的编号 %d \n", curBoy.getNo()); if (curBoy.getNext() == first) {// 说明已经遍历完毕 break; } curBoy = curBoy.getNext(); // curBoy后移 } } // 根据用户的输入,计算出小孩出圈的顺序 /** * @param startNo 表示从第几个小孩开始数数 * @param countNum 表示数几下 * @param nums 表示最初有多少小孩在圈中 */ public void countBoy(int startNo, int countNum, int nums) { // 先对数据进行校验 if (first == null || startNo < 1 || startNo > nums) { System.out.println("参数输入有误, 请重新输入"); return; } // 创建要给辅助指针,帮助完成小孩出圈 Boy helper = first; // 需求创建一个辅助指针(变量) helper , 事先应该指向环形链表的最后这个节点 while (true) { if (helper.getNext() == first) { // 说明helper指向最后小孩节点 break; } helper = helper.getNext(); } //小孩报数前,先让 first 和 helper 移动 k - 1次 for(int j = 0; j < startNo - 1; j++) { first = first.getNext(); helper = helper.getNext(); } //当小孩报数时,让first 和 helper 指针同时 的移动 m - 1 次, 然后出圈 //这里是一个循环操作,知道圈中只有一个节点 while(true) { if(helper == first) { //说明圈中只有一个节点 break; } //让 first 和 helper 指针同时 的移动 countNum - 1 for(int j = 0; j < countNum - 1; j++) { first = first.getNext(); helper = helper.getNext(); } //这时first指向的节点,就是要出圈的小孩节点 System.out.printf("小孩%d出圈\n", first.getNo()); //这时将first指向的小孩节点出圈 first = first.getNext(); helper.setNext(first); // } System.out.printf("最后留在圈中的小孩编号%d \n", first.getNo()); }}复制代码
//测试public class Josepfu { public static void main(String[] args) { // 测试一把看看构建环形链表,和遍历是否ok CircleSingleLinkedList circleSingleLinkedList = new CircleSingleLinkedList(); circleSingleLinkedList.addBoy(125);// 加入5个小孩节点 circleSingleLinkedList.showBoy(); //测试一把小孩出圈是否正确 circleSingleLinkedList.countBoy(10, 20, 125); // 2->4->1->5->3 //String str = "7*2*2-5+1-5+3-3"; }}复制代码